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How do we measure and think about richness?

How do we distinguish rare mis-classifications from low abundance taxa?

Is “everything everywhere”? 

A common problem in bioinformatics

You detect a ASV (sequence variant) in a 16S sequence dataset.

You detect a taxa as being present in a metagenomic WGS sequence dataset

What is the probability that that sequence variant is really there “biologically” 

and does not reflect sequencing (or some other kind of) error



How we view prevalence and richness is very algorithm and method dependent

Metaphlan tends to produce very sparse spreadsheets with a few dominant taxa and lots of zeros…
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Kraken gives us a much less sparse view of the world…



How we view prevalence and richness is very algorithm and method dependent
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We seek a null model that is unlikely to be explained by biology
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Our simplest possible model for classification: “Binomial” or “Poisson” models

You have a very (infinitely) large vat of perfectly mixed ping-pong 

balls

We model a sequence classification event

(for example, labeling a read represents a sequence variant)

as the probability of randomly drawing red balls from a set of 

sequences

N – the total number of sequences in a sample (the red balls + the white balls observed)

p – the fraction of all balls in the vat that belong to a variant

If N is large and p is small we say this is a Poisson process.

We draw a 1,000 ping pong balls (sequences) with a “true”

relative abundance of 0.1%, we would expect 1 red ping pong balls.



If N is large and p is small we say this is a Poisson process.

We draw a 1,000 ping pong balls (sequences) with a “true”

relative abundance of 0.1%, we would expect 1 red ping pong balls.

We can produce our expectation under such a null model very easily in a language such as R



We can generate an entire “simulated” dataset under the Poisson null

Samples

Taxa

Each cell counts how many “red balls” (that taxa) from all the balls in the sample.



Features of a Poisson null model:

No biology (constant background error rate irrespective of sample type of phenotype)

Mean = variance



Poisson processes are reliably inadequate for modeling counts tables in genomics experiments

RNA- seq dataset WGS dataset (through Kraken)

Independent draws across
samples with a constant
relative abundance
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Poisson processes are reliably inadequate for modeling counts tables in genomics experiments

RNA- seq dataset WGS dataset (through Kraken)
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Poisson processes are reliably inadequate for modeling counts tables in genomics experiments

RNA- seq dataset WGS dataset (through Kraken)

Independent draws across
samples with a constant
relative abundance
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Poisson processes can be surprisingly useful in describing accumulation (richness) of sequence variants

Farnaz Fouladi Jack Young



Identify all unique 16S sequences in a dataset.

Sort by abundance – find children (“single mismatch”) variants

https://journals.asm.org/doi/full/10.1128/mSystems.00697-21



Richness is well described across datasets by a simple Poisson process with a constant error rate



Richness is well described across datasets by a simple Poisson process with a constant error rate

Constant error rate

Best error rate
for that data set



Abundance (as usual) is not well fit by Poisson assumptions



Richness is well described across datasets by a simple Poisson process with a constant error rate

Abundance (as usual) is not well fit by Poisson assumptions

One hypothesis:  

In 16S experiments, initial errors accumulate by taq sequencing error (a Poisson process)

The final abundance is dependent on PCR amplification (not a Poisson process)



Bioarchive (and unpublished!)

https://www.biorxiv.org/content/10.1101/2022.04.04.487034v2.abstract

Surprisingly, Poisson algorithms can also be of utility in shotgun sequencing datasets

James Johnson Shan Sun



Kraken and Metaphlan agree on high-abundance taxa but not on low-abundance taxa

Kraken finds not only more taxa but more taxa significantly associated with metadata

Inference is case/control
For IBD at a 5% FDR threshold

Log 10 (mean Kraken 2)
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Can we evaluate the algorithms even though we don’t know the “correct” answer…

Sort all taxa by abundance 

Examine the correlation structure of predictions

1st most abundance – Bacteroides 
2nd most abundance – Escherichia
3rd most abundant – Akkermansia
4th most abundant – Alistipes
…
…

For each taxa, report the highest correlation coefficient among all more abundant taxa

So for the 2nd most abundant, this will be the correlation with the 1st most abundance

For the 3rd most abundant, this will be the max( cor(3rd, 2nd), cor(3rd , 1st))

For the 4th most abundance, this be the max( cor(4th, 1st), cor(4th, 2nd), cor(4th, 3rd) )

And so forth…



Many of taxa for Kraken are highly correlated with a more abundant “parent” taxa

Log 10 (mean Kraken 2)

Rho



We can model this behavior with a simple Poisson-based procedure with a small # of free parameters

Assume the top 10 taxa are “real”.

Simulate the rest of the dataset as Poisson based sampling error:

for each “simulated” taxa

randomly choose one of 

randomly choose an error rate over some range (e.g. 0 < error <= 0.002 )

sum(rpois(45635, lambda = .0002))
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We can model this behavior with a simple Poisson-based procedure with a small # of free parameters

Assume the top 10 taxa are “real”.

Simulate the rest of the dataset as Poisson based sampling error:

for each “simulated” taxa

randomly choose one of 

randomly choose an error rate over some range (e.g. 0 < error <= 0.002 )

In this way we simulate the entire dataset assuming that everything except the 

most abundant taxa is Poisson-based classification error of the most abundant taxa

sum(rpois(342141, lambda = .0001))



Somewhat remarkably, this simple model captures much of the behavior of low-abundance Kraken taxa 

Log 10 (mean Kraken 2)

Rho



A constant error rate fits three of four datasets very well



We can explain much of the prevalence relationship from Kraken with our Poisson model

(alas, with a different background error rate….)
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Mis-classification events from k-mer classifiers of WGS can be well modeled 

with a Poisson distribution with no biology in the null model

Spurious correlations can be problematic for network analysis

Low abundance taxa with high correlations to high abundance taxa should be independently confirmed

as being actually present and not “phantom”

Filtering thresholds for WGS datasets should be set from abundance (not prevalence!)

Mis-classification events become more likely as sequencing depth and database density increase!

Error models may allow us to capture background expectations and evaluate null hypotheses 

that a given observation of a taxa can be explained by background error rate calculations…

We have such a model for 16S ASVs and are working towards that in WGS









Kraken and Metaphlan agree on high-abundance taxa but not on low-abundance taxa

Kraken finds not only more taxa but more taxa significantly associated with metadata


